

Arrhenius Definition Arrhenius: any substance which ionizes in water to produce: Protons is an Acid. Hydroxide ions is a Base. Better version of the Arrhenius definition: Acid: Hydronium ions (H₃O⁺) in water are acidic. Base: Hydroxide ions (OH⁻) in water are basic. So, why is NH₃(aq) basic?

	Conjugate acid	Conjugate base]
	H ₂ SO ₄	HSO4	extremely
strong	HBr	Br	weak
\wedge	HCI	CI	
$/ \setminus$	HNO ₃	NO3 ⁻	
ΊLΓ	H ₃ O⁺	H ₂ O	l Do
<u>c</u>	H ₂ SO ₃	HSO3-	asi a
0 0	HSO4	SO42-	Lee lee
Tra l	H ₃ PO ₄	H ₂ PO ₄ -	2
30°	HF	F [.]	E
3	CH ₃ COOH	CH ₃ COO ⁻	l B
ا تو ا	H ₂ S	HS [.]	tre
ы Б	H ₂ PO ₄ -	HPO ₄ ²⁻	S S
as	NH4 ⁺	NH ₃	ast
ing	HCO3	CO32-	i a i
-	H ₂ O	OH-	ל דו
	OH-		1 🗸
xtremely	H ₂	H-	
weak	CH.	CH ² -	strong

loniz	ation Cons	tant for Wate	er 😻
K _w , like T = 25°0	all equilibrium con C (77°F) is usually	stants, is <i>T-</i> depende used as the standar	nt. d <i>T</i> .
	T (°C)	K _w	
	10	0.29 x 10 ⁻¹⁴	
	15	0.45 x 10 ⁻¹⁴	
	20	0.68 x 10 ⁻¹⁴	
	25	1.01 x 10 ⁻¹⁴	
	30	1.47 x 10 ⁻¹⁴	
	50	5.48 x 10 ⁻¹⁴	

Autoionization of Water	ý
H_3O^+ and OH^- are present in all aqueous solutions. Neutral solution.	
Pure water (@ 25°C): $[H_3O^+] = 10^{-7} \text{ M} = [OH^-]$	
Acidic solution	
If acid is added to water:	
 [H₃O⁺] is increased, disturbing the equilibrium: 	
$2 H_2 O \rightleftharpoons H_3 O^+ + OH^-$	
 Equilibrium shifts to remove [H₃O⁺] (and [OH⁻]). 	
• Equilibrium is reestablished: $[H_3O^+] > 10^{-7} \text{ M} > [OH]$	-]
• $[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14} \text{ at } 25^\circ\text{C}.$	

Autoionization of Water

Basic solution.

If base is added to water.

- Equilibrium shifts to remove [OH^{-}] (and [$H_{3}O^{+}$]).
- New equilibrium: [H₃O⁺] < 10⁻⁷ M < [OH⁻].
- $[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}.$

Autoionization of Water

Example

0

Calculate the hydronium and hydroxide ion concentrations at 25°C in a 6.0 M aqueous sodium hydroxide solution.

 $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = 1.0 \ {\rm x} \ 10^{-14}$

NaOH (aq) is strong (100% ionized) so $[OH^-] = 6.0$ M.

 $[H_3O^+](6.0) = 1.0 \times 10^{-14}$

 $[H_3O^+] = 1.7 \times 10^{-15} M [OH^-] = 6.0 M$

0

The pH scale

.....

Acid concentration can vary over a very large range. A logarithmic scale is more convenient:

 $pH = -log_{10}[H_3O^+]$

At 25°C a neutral aqueous solution has:

$$pH = -log_{10}[1.0 \times 10^{-7}] = -(-7.00) = 7.00$$

Acidic solutions: pH < 7.00 (lower pH = more acidic). Basic solutions: pH > 7.00 (higher pH = more basic).

The pOH scale	
Base concentrations:	
$POH = -log_{10}[OH]$ A neutral solution (25°C) has: $pOH = -log_{10}[1.0 \times 10^{-7}] = -(-7.00) = 7.00$	
Since $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ $-\log(K_w) = -\log[H_3O^+] + (-\log[OH^-]) = -\log(1.0 \times 10^{-14})$	
$pK_w = pH + pOH = 14.00$	
(Valid in all aq. solns. at 25°C: acidic, neutral or basic)	

pH Calcu	lations		
Given two aqueous solutions (25°C).			
Solution A : [OH ⁻] = 4.3 x 10 ⁻⁴ M,			
Solution B : $[H_3O^+] = 7.5 \times 10^{-9} \text{ M}.$			
Which has the higher pH? Which is more acidic?			
Solution A:	pOH = −log[OH ⁻] = 3.37		
	pH + pOH = pK _w = 14.00		
	pH = 10.63		
Solution B :	pH = −log[H ₃ O+] = 8.12		
A has hi	gher pH, B is more acidic		

Base Ionization Constants

For a base in water:

 $B(aq) + H_2O(l) \implies BH^+(aq) + OH^-(aq)$

Q

The base ionization constant,
$$K_{\rm b}$$
, is:

$$K_{\rm b} = \frac{[\rm BH^+][\rm OH^-]}{[\rm B]}$$

If the base is an anion:

$$A^{-}(aq) + H_2O(l) \implies HA(aq) + OH^{-}(aq)$$

$$K_{\rm b} = \frac{[\rm HA][\rm OH^{-}]}{[\rm A^{-}]}$$

a Som	e acids can don	ate more than on	e H⁺:	
	Formula	Name	Acidic H's	
	H₂S	Hydrosulfuric Acid	2	
	H ₃ PO ₄	Phosphoric Acid	3	
	H ₂ CO ₃	Carbonic Acid	2	
	ноос-соон	Oxalic acid	2	
	C ₃ H ₅ (COOH) ₃	Citric acid	3	
Eac	h H ⁺ ionization I	has a different K_a		
• T	he 1 st proton is e	easiest to remove).	

• The 2nd is harder, etc.

ζ.
a
(10 ⁻⁸
(10 ⁻⁹
(10 ⁻¹¹

Strength of Oxoacids

H-O-Z with Z = group of atoms.

Acid		Bonding	Ka
perchloric acid	HCIO ₄	H-O-CIO3	1 x 10 ⁸
chloric acid	HCIO ₃	H-O-CIO ₂	1 x 10 ³
chlorous acid	HCIO ₂	H-O-CIO	1 x 10 ⁻²
hypochlorous acid	HCIO	H-O-CI	4 x 10 ⁻⁸

.

Stronger acid = weaker H-O bond.

If Z is:

More e^- withdrawing = weaker bond = stronger acid. More O atoms = more e^- withdrawing.

Proble	em Solving Us	sing <i>K</i> _a an	d K _b 💽
	HA(aq) + H ₂ O(ℓ) =	H₃O⁺(aq)	+ A ⁻ (aq)
[]initial	0.100	1.0 x 10 ⁻⁷ (water autoionization	0 on)
[] _{change}	-0.0037	+0.0037	+0.0037
[] _{equil}	0.100 - 0.0037	0.0037*	0.0037
	*Ignore the w	ater contribution becau	ise it is so small.
	$\mathcal{K}_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$		
	$=\frac{(0.0037)(0.00)}{(0.100-0.00)}$	<u>137)</u> = 1.4 x 10 ⁻⁴ 37)	

Problem Solving Using K_{a} and K_{b}
Example: pH from K_a Determine the pH of a 0.100 M propanoic acid solution at 25°C. $K_a = 1.4 \times 10^{-5}$. What % of acid is ionized?
$C_2H_5COOH + H_2O(\ell) \implies H_3O^+(aq) + C_2H_5COO^-(aq)$
Or $HA + H_2O \implies H_3O^+ + A^-$
$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} = 1.4 \times 10^{-5}$

Proble	m Solving	Using <i>K</i> _a a	and <i>K</i> _b 😻	
Determine [OH] and pH of a 0.060 M dimethylamine				
solution a	125° C. $K_{\rm b} = 5.9$	x 10 .	.	
$(CH_3)_2NH$	$H + H_2O(l) \Longrightarrow$	$(CH_3)_2 NH_2^+(ac)$	q) + OH ⁻ (aq)	
	B(aq) + H ₂ O(l)	←→ BH+(aq)	+ OH ⁻ (aq)	
[] _{initial}	0.060	0	0*	
[] _{change}	-x	+x	+x	
[] _{equilib}	0.060 – x	х	X*	
K _b = 5.9	$ x \ 10^{-4} = \frac{[BH^+][0]}{[B]} $ $= \frac{x^2}{(0.060 - x^2)^2} $	$\frac{DH^{-}]}{-x} \approx \frac{x^2}{0.060}$	*lgnore water.	

Problem Solving Using $K_{\rm a}$ and $K_{\rm b}$
Check the exact solution.
$5.90 \times 10^{-4} = \frac{x^2}{0.060 - x}$
$x^2 = (5.90 \times 10^{-4})(0.060 - x)$
x^{2} + 5.90 x 10 ⁻⁴ x - 3.54 x 10 ⁻⁵ = 0
Quadratic solution: $x = 0.0057 \text{ M}$ pOH = 2.25 pH = 11.75 The approximate method gave pOH = 2.23
In general, approx. method is "good" if x < []/20

Relationship between <i>K</i> _a and <i>K</i> _b values
For an acid-base conjugate pair: HA and A-
$K_{a} \times K_{b} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} - \frac{[HA][OH^{-}]}{[A^{-}]} = [H_{3}O^{+}][OH^{-}] = K_{w}$
Phenol, C ₆ H ₅ OH, is a weak acid, $K_a = 1.3 \times 10^{-10}$ at 25°C. Calculate K_b for the phenolate ion C ₆ H ₅ O ⁻ . $K_a \propto K_b = 1.0 \times 10^{-14}$
$K_{\rm b} = \frac{1.0 \times 10^{-14}}{1.3 \times 10^{-10}} = 7.7 \times 10^{-5}$

Salts of Strong Bases and Weak Acids
For a weak acid + strong base, pH depends on $K_{\rm b}$. Larger $K_{\rm b}$ = stronger base
Example What is the pH of 1.50 M Na ₂ CO ₃ (aq)? K_b (CO ₃ ²⁻) = 2.1 x 10 ⁻⁴ .
Na ⁺ is the conjugate acid of NaOH (strong base). • It remains 100% ionized. • Na ⁺ has no effect on pH. $CO_3^{2^-}$ is the conjugate base of HCO_3^- (weak acid). • Hydrolysis: $CO_3^{2^-}$ + H ₂ O → HCO_3^- and OH ⁻

• Changes the pH.

pH of a	a Salt Solu	tion	
What is the pH	l of a 1.50 M Na ₂ CO ₃ (aq)	? $K_b = 2.1 \times 10^{-4}$	
	CO ₃ ²⁻ (aq) + H ₂ O(4	ℓ) \rightleftharpoons HCO ₃ -(ad	q) + OH ⁻ (aq)
	1.50	0	0
[] _{change}	- x	+x	+x
[] _{equil}	1.50 - x	х	х
<i>K_b</i> = 2.1 x	$10^{-4} = \frac{[\text{HCO}_3^{-1}][\text{O}_3^{-1}]}{[\text{CO}_3^{-2}]}$	$\frac{[H^{-}]}{(1.50 - 1.50)} = \frac{x^2}{(1.50 - 1.50)}$	\overline{x}) $\approx \frac{x^2}{1.50}$
x = 1.77	7 x 10 ⁻² pOH = - pH = 14.00 - 1	log(1.77 x 10 ⁻² 1.75 = 12.25	2) = 1.75

Salts of Weak Bases and Strong Acids
Similar arguments. NH ₃ (aq) + HCl(aq) \longrightarrow NH ₄ ⁺ (aq) + Cl ⁻ (aq)
$\begin{array}{rcl} NH_3(aq) + H_3O^+(aq) + CI^{-}(aq) & \longrightarrow \\ & NH_4^+(aq) + CI^{-}(aq) + H_2O(\ell) \\ \\ Net \ ionic: \ NH_3(aq) + H_3O^+(aq) & \longrightarrow NH_4^+(aq) + \ H_2O(\ell) \end{array}$
An equimolar reaction produces an acidic solution: $NH_4^+(aq) + H_2O(l) \implies NH_3(aq) + H_3O^+(aq)$
The final pH depends on K_a : Larger K_a = more acidic

pH of a Salt Solution
Find the pH of 0.132 M NH ₄ Br(aq). Is this solution acidic, basic or neutral? $K_a(NH_4^+) = 5.6 \times 10^{-10}$.
The solution contains NH_4^+ ions and Br^- ions. • NH_4^+ is the conjugate acid of NH_3 (a weak base) • $NH_4^+ + H_2O \implies NH_3 + H_3O^+$ • Acidic solution!
 Br is the conjugate base of HBr (a strong acid). Br ions stay fully ionized. Does not change the pH.

Acids, Bases and Salts	6
Strong acid + strong base \rightarrow salt solution, pH = 7	
Strong acid + weak base \rightarrow salt solution, pH < 7	
Weak acid + strong base \rightarrow salt solution, pH > 7	
Weak acid + weak base \rightarrow salt solution, pH = ?Need \mathcal{K} s"strongest wins"	

