Today- HH Problem:

- 2-period deterministic HH Problem
- 2-period HH Problem with stochastic income

Household optimization

- What is dynamic?
 - savings; state=wealth, control=consumption/future wealth
 - expenditures on durables; state=stock of durables, control=purchase of durables
 - human capital accumulation; state=education, control=continue in program/go to college
 - family size/structure; state=divorce/#adults/#kids, controls=?
 - health; state=health, control=exercise/smoke/health expenditures
 - employment status; state=employed or unemployed, control=search when unemployed

- We’ll look at savings first and derive some important macro results concerning the HH’s problem.
- We’ll also have our first look at how these theoretical models tie into empirical analysis.
- While our focus is on savings first, you should be able to see how these results generalize.

2-period Household Problem

- Non-stochastic case: \(\max(c_0) + \beta u(c_1) \), s.t. \(c_0 + \left(\frac{c_1}{R_0} \right) = y_0 + \left(\frac{y_1}{R_0} \right) + A_0 \)
 - endowment \(y_t \) in period \(t = 0, 1 \) \(\rightarrow \) labor income
 - endowment of \(A_0 \) from previous generation \(\rightarrow \) non labor income
 - \(R_0 \) is return on borrowing/lending
 - FOC: \(u'(c_0) = R_0 \beta u'(c_1) \)
 - draw graph with period 0 and period 1 consumption on each axis. Show that if \(\beta R_0 = 1 \) then indifference curve tangent at 45 degree line (because only way marginal utilities equal is if consumption in each period equal)

- Stochastic Income Case
 - \(y_0 \) known before choosing saving
 - \(y_1 \) not known until period 1
 - \(\max_{c_0} E_{y_1|y_0} \{ u(c_0) + \beta u(R_0(A_0 + y_0 - c_0) + y_1) \} \)
 - Show step were pass expectations through
 - FOC: \(u'(c_0) = \beta R_0 E_{y_1|y_0} u'(c_1) \)
* \(\beta R_0 = 1 \Rightarrow u'(c_0) = E_{y_1|y_0} u'(c_1) \) does not imply \(u'(c_0) = u'(c_1) \)

- **Example:** Highlight \(\frac{\partial c_0}{\partial y_0} \) (how does consumption vary as income varies)
 - \(u(c) = a + bc - \left(\frac{d}{2} \right) c^2 \) \((a, b, d)\) are parameters
 - first order process for \(y_t \)
 * \(y_t = \rho y_{t-1} + \varepsilon_t \), \(\rho \) is a parameter - it parameterizes the persistence of the income process
 * We assume \(E \varepsilon_t = 0 \), thus we know \(E(y_1) = E\{\rho y_0 + \varepsilon_1\} = E\rho y_0 + E\varepsilon_1 = \rho y_0 \)
 - \(\beta R_0 = 1 \) assumption
 - How rewrite \(u'(c_0) = \beta R_0 E_{y_1|y_0} u'(c_1) \) with the above assumptions?
 * \(b - dc_0 = E_{y_1|y_0} \{b - d(R_0(A + Y_0 - c_0) + y_1)\} \)
 * can solve this for \(c_0: c_0 = R_0(A + y_0 - c_0) + E_{y_1|y_0} y_1 \)
 - \(b/c \) with linear function we can pull the expectations operator through
 * \(\Rightarrow c_0 = \frac{R_0(A + y_0) + \rho y_0}{1 + \rho} \)
 * \(\Rightarrow \frac{\partial c_0}{\partial y_0} = \frac{R_0 + \rho}{(R_0+1)^2} > 0 \Rightarrow \rho \uparrow \Rightarrow \frac{\partial c_0}{\partial y_0} \uparrow \)
 - if \(\rho \) close to 1, means high earnings now imply high earning later - persistence. So consume more as \(y_0 \) increase because income increase is more permanent (if \(\rho = 1 \) consumption increases dollar for dollar with income because a permanent increase in income)
 - This is exactly Milton Friedman’s Permanent Income Hypothesis.
 * This theory sought to explain the “consumption puzzle”
 * The puzzle was the the Keynesian consumption function models could not explain the empirical fact that the average propensity to consume \(\frac{C}{Y} \) falls as income rises in the short run, but is flat as income rises when looking over longer time periods.
 * The PIH proposes that consumption responds more to permanent income changes than transitory changes. Thus you get a falling APC in the short run because consumption doesn’t change so much for transitory increases in income. But these transitory shocks average out in the long run - so in the long run, consumption is a function of permanent income.