Chapter 16: Consumption

Key points:

- The lifecycle theory of consumption
- The permanent income hypothesis

Keynes’ consumption function:

- Properties:
 - A marginal propensity to consume between 0 and 1
 - \(0 < MPC < 1\)
 - A declining average propensity to consume
 - \(APC = \frac{C}{Y}, \frac{\partial APC}{\partial Y} < 0\)
 - Consumption only a function of income (not interest rates!! - big assumption)
 - e.g. something like, \(C = \bar{C} + MPC \times (Y - T)\)
 - e.g. if \(C = 500 + 0.8(Y - T), \ MPC = 0.8 < 1, \) if \(Y = 200, \ T = 0\) then \(APC = \frac{500 + 0.8(200 - 0)}{200} = \frac{660}{200} = 3.3\), whereas if \(Y = 500, \ APC = \frac{500 + 400}{500} = \frac{9}{5} = 1.8\)
 - Empirical Success:
 - Higher income people save more and consume more
 - \(\implies 0 < MPC < 1\)
 - Higher income save a larger fraction of income
 - \(\implies APC = \frac{C}{Y}\) declining in \(Y\), i.e., \(\frac{\partial APC}{\partial Y}\) < 0
 - Changes in \(Y\) explain most of \(C \rightarrow\) not much room for \(r\)
 - Empirical Failures:
 - 1. Secular stagnation
 - b/c \(APC = \frac{C}{Y}, \ \frac{\partial APC}{\partial Y} < 0\), then \(C\) falls and \(S\) ↑ as income grows.
 - The result: The economy would enter a period of low growth as exhaust profitable resources
 - This never happened (though some suggest it is starting to happen now)
 - 2. Kuznets’ data
 - 1869-1940 → growth in income in aggregate, but \(APC\) not change
 - 3. The consumption puzzle
 - Keynes’ consumption function works for households and in the short run - where the \(APC\) declines in income
 - The consumption function doesn’t work well when looking at households over longer periods of time or for the economy in aggregate - where the \(APC\) doesn’t change with income
Solution to Keynes:

- Solve the puzzle using microeconomic theory to explain aggregate consumption
- Intertemporal choice - no longer present income and present consumption

Intertemporal Choice:

- Choose consumption over lifetime
- Can borrow and lend
 - Allows one to move income around over lifetime
 - Lifetime budget constraint - limited by what make in lifetime, not in a given year
- 2-period example:
 - live 2 periods
 - earn income in both: \(Y_1 \) and \(Y_2 \)
 - consume in both: \(C_1 \) and \(C_2 \)
 - borrow or lend between periods at rate \(r \)
 - Think of consumption in each period as different goods:
 - Consumer maximizes utility: \(U(C_1, C_2) \)
 - Subject to lifetime budget constraint:
 - Period 1: \(Y_1 - C_1 = S \)
 - Period 2: \(C_2 = (1 + r)S + Y_2 \)
 - Together: \(C_2 = (1 + r)(Y_1 - C_1) + Y_2 \)
 - Or: \(C_1 + \frac{C_2}{1 + r} = Y_1 + \frac{Y_2}{1 + r} \)
 - Note that future consumption costs less than current because earn rate \(r \) on savings (\(p_1 = 1, p_2 = \frac{1}{1+r} < 1 \), if \(r > 0 \))
 - Note that future income worth less in PV terms because current income allows opp to earn interest
 - This is the lifetime budget constraint- says that agent can consume more in one period or another - just limited to resources over lifetime
 - Once you think of \(C_1 \) and \(C_2 \) as different goods, and see that the ability to borrow/lend at rate \(r \) changes the relative price of present vs future consumption, analysis is just like static, 2-good problem in micro.
 - Budget Constraint:
 - DRAW axes of \(C_1 \) and \(C_2 \) and budget constraint. Note that slope of budget constraint is \(-(1+r)\).
 - Note endowment point and highlight parts of LBC that show savings/borrowing.
 - Preferences:
 - DRAW preferences: IC1, IC2 are indifference curves.
Indifference curves have slope = - marginal rate of substitution (MRS)

\[MRS = \frac{MU_{C1}}{MU_{C2}} \]

This is the rate at which agent would trade future consumption to obtain consumption today

Optimization:

- **DRAW** budget constraint and ICs all together. Show that point of tangency is optimal bundle - puts agent on highest indiff curve.

 - As w/ apples and oranges, utility is maximized by choosing the IC tangent to the BC

 - When IC tangent to BC, this means that the both have the same slope.

 - Slope IC = - MRS = \(-\frac{MU_{C1}}{MU_{C2}}\)

 - Slope BC = - price ratio = - \(\frac{p_1}{p_2}\) = \(-\frac{1}{1 + r}\) = \(-(1 + r)\)

 - Thus, at optimum choice of \(C_1\) and \(C_2\), \(\frac{MU_{C1}}{MU_{C2}} = 1 + r\)

 - In words, this means that the marginal benefit of trading off \(C_2\) for \(C_1\) in terms of utility (the LHS of the above equality) is equal to the terms of trade of \(C_2\) for \(C_1\) (give by the RHS of the equality above).

 - Another way to write this equation is that \(MU_{C1} = (1 + r)MU_{C2}\). Which means that the marginal utility per present value dollar spent on \(C_1\) (the LHS) equals the marginal utility per present value dollar spent on \(C_2\) (the RHS).

Implications:

- \(C_1\) and \(C_2\) depend on \(Y_1, Y_2,\) and \(r\)

- lifetime (not present) income matters for consumption decisions

- \(r\) matters for consumption

 - \(\uparrow r\) may increase or decrease income

 - Depends if consumer is a net borrower (decreases cons) or net saver (increases cons)

- Borrowing constraints matter

 - If constrained, present income will matter

Life-cycle theory of consumption:

- Franco Modigliani’s attempt to solve the Consumption Puzzle

- Person has wealth and earns income until retirement

- People like to consumption smooth

 - The preference for smoothing consumption is related to risk aversion and the concept of diminishing marginal utility

 - Use example where achieve perfect smoothing \(\rightarrow\) consume same in all periods of life

 - Initial wealth = \(W\), \(R\) years of working life, \(Y\) income per year working, \(T\) years in life

 - \(\Rightarrow C = \frac{W + RY}{T}\), where \(C\) is consumption in each period

 - \(\Rightarrow C = \frac{W}{T} + \frac{R}{T}Y\)

 - If everyone has this function, then economy-wide consumption given by:

 - \(C = \alpha W + \beta Y\)

 - \(\alpha = \) marginal propensity to consume out of current wealth

 - \(\beta = \) marginal propensity to consume out of current income

 - **DRAW** consumption function with intercept \(\alpha W\) and slope \(\beta\)

 - Note: This looks a lot like Keynes’ consumption function
A function like this solves the Consumption Puzzle

\[APC = \frac{C}{Y} = \alpha \frac{W}{Y} + \beta \]

- Short run: Year over year (or person over person); \(W \) doesn’t change quickly, so \(\uparrow Y \Rightarrow \downarrow APC \)
- Long run: Over time, \(W \uparrow \) if \(Y \uparrow \Rightarrow \frac{W}{Y} \) not change with \(Y \uparrow \Rightarrow APC \) not change when \(Y \uparrow \)

Other implications:
- Savings rate changes over lifetime
- e.g. earn $50k per year (\(Y \)), $100k initial wealth (\(W \)), \(r = 0 \), work 20 years, retire 20 yrs
- DRAW graph with time on horiz axis, dollars on vertical. Show consume 27.5k each year for life = (50x20+100)/40. Save 50k-27.5k while working. Dissave 27.5k per year when retired.

The Permanent-Income Hypothesis:
- Milton Friedman’s solution to the Consumption Puzzle
- Current income has a permanent and temporary (transitory) component:
 - So income is not pre-determined, but is uncertain
 - \(Y = Y^P + Y^T \)
 - e.g. salary + bonus
- Consumers want to smooth consumption, so consumption decisions should depend largely on permanent income
 - \(\Rightarrow \) consumption some fraction of permanent income: \(C = \alpha Y^P \)
 - \(\alpha \) = fraction of permanent income consumed each year
- Implications:
 - \(APC = \frac{C}{Y} = \frac{\alpha Y^P}{Y} \)
 - recall, \(Y = Y^P + Y^T \)
 - So if \(Y^T \uparrow \Rightarrow Y \uparrow \Rightarrow APC \downarrow \)
- How a function like this solves the consumption puzzle:
 - Get \(\frac{\partial APC}{\partial Y} < 0 \) in the short run because transitory changes in income do not affect consumption
 - Over a longer period of time, transitory changes average out, so \(APC = \frac{\alpha Y^P}{Y} \) and \(APC \) is constant

The Random-Walk Hypothesis:
- Robert E. Hall (Stanford)
- Consumers are forward looking, so base consumption on expectations of future income
- Combine this with the Permanent Income Hypothesis, \(Y = Y^P + Y^T \)
- Implications:
 - Consumption follows a random-walk (i.e., all changes in consumption are unpredictable)
Only unexpected policy changes influence consumption. Policy changes have effects as soon as they change expectations (i.e., before they are implemented).

Behavioral Economics:
- Use psychology to predict economic behavior.
- Drop assumptions about strict rationality, forward-lookingness.
- E.g., time inconsistent preferences:
 - $100 today vs $101 tomorrow
 * Most take $100 today.
 - $100 in 100 days vs $101 in 101 days
 * Most take $101.
 - \Rightarrow people may not be saving as much as they’d like to (when they look backwards in time, they wish they’d have saved more).
- Other things that alter the standard consumption functions we’ve looked at here:
 - Habit formation (todays cons depends on yesterday’s).
 - Reference dependent preferences (care about cons relative to peer group).

Summary:
- Keynes: Consumption = $f(Y)$
- Others: Consumption = $f(Y, W, r, \text{future income, expectations, psychology, borrowing constraints,...})$