Given a cellular embedding of a graph G into a surface S, local “combinatorial curvatures” are defined for each vertex or face, with curvature values dependent solely on the topology of the embedding. For such an embedding into such a bounded (compact) surface S without boundaries, it turns out that the sum over these combinatorial curvatures either for the vertices or for the faces gives 2π times the Euler-Poincare characteristic for S. Notably, this is the same result as for Descartes’ defects summed over the corners of S when S is a piecewise planar (polyhedral-like) surface. Also this result is the same as for the Gaussian curvature integrated over S when S is a boundariless smooth (compact) surface S.

Moreover, this combinatorial curvature (for graph embeddings) seems to manifest further characteristics justifying its naming. Most generally it is speculated that for “reasonable” embeddings of G into a surface S which is in turn smoothly embedded in Euclidean 3-space \mathbb{E}_3, there should be a local matching between combinatorial & Gaussian curvatures. Here “reasonable” means that the edges of G as occur in the overall embedding are of similar lengths L, and that the principal radii of curvature for the Gaussian curvature of S are uniformly greater than this length L. Finally this matching speculation is suggested to be relevant in understanding conjugated-carbon nano-structures.