Section 4.2

Polynomial:
\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \]

- Degree = largest exponent
- Graph = smooth curves, continuous over \(\mathbb{R} \)

Turning points: pts where graph goes from dec/inc or inc/dec

- Linear: \(a > 0 \) \(\Rightarrow \) 0 turning pts \(y = ax + b \) \(\text{deg} = 1 \)
- Quadratic: \(a > 0 \) \(\Rightarrow \) 1 turning pt
- Cubic: \(a > 0 \) \(\Rightarrow \) up to 2 turning pts
- Quartic: \(a > 0 \) \(\Rightarrow \) up to 3 turning pts
- Quintic: \(a > 0 \) \(\Rightarrow \) up to 4 turning pts

#2 (2, 65)
After 2 sec, the max height of the stone is 65 ft.

Extrema

Relative extrema: Rel max/rel min. (local) \((x,y) \) find these at turning pt

Absolute extrema: Absolute max/min (global) \((x,y) \)

End behavior: What happens to \(y \) values as \(x \) gets Really Big or Really Small.

- Degree even: \(a > 0 \), as \(x \) gets big or small, \(y \) gets Big
- \(a < 0 \), as \(x \) gets big or small, \(y \) gets small

#39
\[f(x) = -x^3 + 8x \]

Graph rises from left to right

Graph falls from left to right