Chapter 19: Blood

The Cardiovascular System

• A circulating transport system:
 – a pump (the heart)
 – a conducting system (blood vessels)
 – a fluid medium (blood)
Functions of the Blood

- **Transport functions:**
 - oxygen and carbon dioxide
 - nutrients
 - hormones
 - waste products

- **Regulatory functions:**
 - Maintaining appropriate body temperature
 - Maintaining normal pH of body tissues
 - Maintaining adequate fluid volume in the circulatory system
 - Salt content of blood
 - Protein content of blood

- **Protective functions:**
 - Houses and distributes the immune system components
 - Prevents infection
 - Contains clotting agents to prevent fluid loss

Characteristics of blood

- **Viscous liquid**
 - 5X more viscous than water
 - 5-6 liters in male
 - 4-5 liters in female
 - Difference mainly due to larger size of male but testosterone also stimulates blood cell formation
 - normovolemic
 - hypovolemic
 - hypervolemic

- **Slightly alkaline**
 - pH 7.35 to 7.45
 - Venous blood of the systemic circulation is more acidic
 - Slightly alkaline
What are the components of blood?

Blood

• Is specialized type of connective tissue
 – Made of:
 • Plasma
 – Is a fluid matrix
 • Formed elements
 – Red blood cells
 – White blood cells
 – Platelets
What is the composition and function of plasma?

Plasma

- Makes up 50–60% of blood volume
 - Contains
 - Water
 - Dissolved plasma proteins
 - Other solutes
 - Ions
 - Gases
 - Wastes
 - nutrients
Plasma

3 Classes of Plasma Proteins

- Albumins (60%)
- Globulins (35%)
- Fibrinogen (4%)

- Other types (less than 1%)
Slide 11

Albumins

- Holds water in the circulatory system:
 - Contribute to osmotic pressure of blood
- Are pH buffers:
- Are transport proteins:
 - fatty acids
 - thyroid hormones
 - steroid hormones

*albumins are made by the liver

Slide 12

Globulins

1. **immunoglobulins**, also called **Antibodies**
 are made by white bloods cells called plasma cells
2. **Transport globulins** (small molecules):
 - hormone-binding proteins
 - Metalloproteins
 - (transferrin-iron, ceruloplasmsin-copper)
 - apolipoproteins (fatty acids, cholesterol)
 - steroid-binding proteins

* transport globulins are made by the liver
Fibrinogen

- Most numerous of the clotting proteins
- Produce long, sticky, insoluble strands of fibrin

*made by the liver

Serum

- Liquid part of a blood sample:
 - Plasma in which dissolved fibrinogen has converted to solid fibrin and removed
Other Plasma Proteins

- Less than 1% of plasma proteins:
 - Constantly changing quantities of specialized plasma proteins
 - enzymes, hormones, and prohormones

Origins of Plasma Proteins

- 90% made in liver
- Antibodies made by plasma cells
- Peptide hormones made by endocrine organs
Formation of Formed Elements (Hemopoiesis)

- Hemocytoblasts form in the blood islands of the yolk sac
 - Main function is to produce RBC to support early embryo
 - First appears at third week of development
- A second population of cells form called hemanigioblast
 - Located in the embryo at the forming aorta and heart
 - Gives rise to
 - Endothelium stem cells
 - Involved in blood vessel formation
 - Hemocytoblast
 - Migrates to the liver, spleen, thymus, and red bone marrow
 - Produces RBC, WBC, and platelets

Sites of Hemopoiesis
Cell arising from the Hemocytoblast

- Lymphoid stem cell
 - Lymphoblast
 - Prolymphocyte
 - Lymphocytes
- Myeloid stem cell
 - Proerythroblast
 - Erythrocytes
 - Granulocyte-macrophage colony-forming unit
 - Myeloblast
 - Bands cells
 - Neutrophils
 - Eosinophils
 - Basophils
 - Monoblast
 - Monocytes
 - Macrophages
 - Megakaryoblast
 - Platelets

Blood Cell Production
Types of Formed Elements

- 1. Red blood cells
 - Erythrocytes
- 2. White blood cells
 - Leucocytes
- 3. Platelets

1. Erythrocytes (RBC)
What are the characteristics red blood cells?

Red Blood Cells

- Red blood cells (RBCs) make up 99.9% of blood's formed elements
Measuring RBCs

- **Red blood cell count:**
 - reports the number of RBCs in 1 microliter whole blood
- **Hematocrit (packed cell volume or PCV):**
 - percentage of RBCs in centrifuged whole blood

Normal Blood Counts

- **RBC:**
 - male: 4.5–6.3 million/microliter
 - female: 4.2–5.5 million/microliter

Single drop of blood will have 260 million RBC
25 trillion RBC in an adult

- **Hematocrit:**
 - male: 46%
 - female: 42%
Slide 27

RBC Structure

- Small and highly specialized biconcave disc
 - Bags of hemoglobin (97% dry weight)
- Thin in middle and thicker at edge

Slide 28

Importance of RBC Shape and Size

1. High surface-to-volume ratio:
 - quickly absorbs and releases oxygen
2. Discs form stacks (rouleaux)
 - smoothes flow through narrow blood vessels
3. Discs bend and flex entering small capillaries:
 - 7.8 \(\mu m \) RBC passes through 4 \(\mu m \) capillary
Functions of Red Blood Cells

1. Transportation of respiratory gases
 - Role of hemoglobin

2. pH regulation
 - Also a role of hemoglobin
What is the structure and function of hemoglobin?

Hemoglobin (Hb)

- Protein molecule, transports respiratory gases
- Normal hemoglobin (adult male):
 - 14–18 g/dl whole blood
Hemoglobin Structure

• Complex quaternary structure

Slide 34

Hemoglobin Structure

• 4 globular protein subunits:
 – each with 1 molecule of heme
 • Made from four pyrrole rings
 – each heme contains 1 iron ion
 • Located between the pyrrole rings

• Iron ions easily:
 – associate with oxygen (oxyhemoglobin)
 – or dissociate from oxygen (deoxyhemoglobin)
Hemoglobin Structure

- Complex quaternary structure

Forms of Hemoglobin

- Oxyhemoglobin
 - Found with high oxygen levels (lungs)
 - Hb bound to oxygen
 - Almost 100% of Hb in this form as it leaves the lungs

- Deoxyhemoglobin
 - Found with low oxygen levels (peripheral capillaries)
 - Hb releases oxygen
 - Binds to acid (H) and carries it to lungs
 - Functioning to buffer pH

- Carbaminohemoglobin
 - Found with low oxygen and high CO2 (peripheral capillaries):
 - Hemoglobin releases oxygen (forms deoxyhemoglobin)
 - Binds carbon dioxide and carries it to lungs
 - 23% of Hb in this form as it leaves the tissues

All three forms can be present in a single RBC
Fetal Hemoglobin

- Form of hemoglobin found in embryos
 - Two beta chains are replace with gamma chains
 - Fetal Hb Has higher binding affinity for oxygen
 - Takes oxygen from mother’s hemoglobin
 - Treat sickle cell anemia with butyrate (a food additive) to promote synthesis of fetal Hb

Anemia

- Hematocrit or hemoglobin levels per cell are below normal
 - Results in low blood oxygen levels
- Is caused by several conditions
 - Low dietary iron
 - Blood loss
 - Low B12 (pernicious anemia)
 - Low protein intake
 - Blood diseases (sickle cell, malaria)
 - Chemotherapy
Erythropoiesis

Red blood cell formation

Lifespan of RBCs

- Lack nuclei, mitochondria, and ribosomes
 - Unable to make repairs
 - Make a complete round trip in one minute
 - 700 miles in its lifespan
- Live about 120 days
 - Must replace about 3 million RBCs per second
Erythropoiesis

- Red blood cell formation
- Occurs only in red bone marrow
- Located in the spongy bone in adults
 - Also located in the marrow cavity in the long bones of children
- A process whereby a stem cell matures to become RBCs

Stages of Erythropoiesis

- Myeloid stem cell
 - Embryonic stem cell that is present but not active in the adult
 - Migrates to the bone marrow
- Proerythroblast
 - Located in the bone marrow
 - Constantly undergoing mitosis forming replacement proerythroblasts and erythroblasts
- Erythroblast
 - Located in the bone marrow
 - Contains large numbers of ribosomes
 - Actively synthesizing proteins (heme)
- Normoblast
 - Located in the bone marrow
 - Is a erythroblast that has stopped transcription and is preparing to eject the nucleus
- Reticulocyte
 - Located in the bone marrow but later is released into the blood
 - Forms from the normoblast following the ejection of the nucleus and most other organelles
 - Continues to produce Hb using remaining ribosomes and stored mRNA
- Mature RBC
 - Located in the blood
 - After the reticulocyte stops producing more Hb the remaining cell is termed a erythrocyte
Regulation of Erythropoiesis

- **Erythropoietin (EPO)**
- Also called *erythropoiesis-stimulating hormone*:
 - secreted from kidneys and liver when oxygen in peripheral tissues is low (hypoxia)
 - Move to high altitude
 - Blood loss
 - Athletic training
 - Reduced lung function
 - Emphysema triggers polycythemia
 - secreted from kidneys when BP drops

Can increase rbc production to 30 million/sec
Effects of erythropoietin

- Stimulates cell division in proerythroblast
- Stimulates hemoglobin synthesis in erythroblasts, normoblasts, and reticulocytes

Requirements for Erythropoiesis

- Erythropoietin
- Amino acids
- Iron
- Vitamins B_{12}
 - Required for purine synthesis
- Vitamin B_6
 - Coenzyme in amino acid and lipid metabolism
- Folic acid
 - Coenzyme in nucleic acid metabolism
Recycling RBCs

- 1% of circulating RBCs wear out per day:
 - about 3 million RBCs per second
 - 90% are engulfed by macrophages
 - 10% undergo hemolysis in the blood

- Macrophages are located in the liver, spleen, and bone marrow:
 - monitor spectrin levels of RBCs
 - As spectrin levels drop they lose flexibility and are trapped in reticular connective tissue
 - engulf RBCs before membranes rupture (hemolysis)
Hemoglobin Recycling

- Phagocytes break hemoglobin into components:
 - globular proteins to amino acids
 - heme to biliverdin
- Release iron
Iron Recycling

- Carried in the blood on transport proteins (transferrin)
- Stored in cells bound to storage proteins (feritin and hemosiderin)

Recycling RBCs
Breakdown of Biliverdin

- **Biliverdin** (green) while in the macrophage is converted to **bilirubin** (yellow)
 - Bilirubin is excreted from the macrophage into the blood
 - Binds to albumin (is lipid soluble)
 - Removed from the blood by the liver
 - Excreted by the liver as part of the bile into the small intestine
 - Converted by intestinal bacteria to urobilins and stercobilins
 - Eliminated in feces
 - Small amounts of bilirubin and break-down products are eliminated by the kidneys

Recycling RBCs
Jaundice

- The accumulation of bilirubin in fatty tissues
 - Typically the hypodermis and sclera
 - Results from exceeding the capacity of albumin to carry bilirubin in the blood
 - Blockage of bile ducts
 - Liver disease
 - Low blood albumin
 - Hepatocytes can't remove bilirubin from blood
 - Blood disease
 - Rapid removal of damaged rbc
 - Hemolytic diseases

2. white blood cells
White Blood Cells (WBCs)

- Also called leukocytes
- Do not have hemoglobin
- Have nuclei and other organelles

WBC Functions

- Defend against pathogens
- Remove toxins and wastes
- Attack abnormal cells
WBC Movement

- Most WBCs in:
 - connective tissue proper
 - lymphatic system organs
- Small numbers in blood:
 - 6000 to 9000 per microliter

Circulating WBCs

1. Migrate out of bloodstream
2. Have amoeboid movement
3. Attracted to chemical stimuli (positive chemotaxis)
4. Some are phagocytic:
 - neutrophils, eosinophils, and monocytes
5 Types of WBCs

1. Neutrophils
2. Eosinophils
3. Basophils
4. Monocytes
5. Lymphocytes
Neutrophils

- Also called polymorphonuclear leukocytes
- 50–70% of circulating WBCs

Neutrophil Action

- Very active and highly mobile, first to attack bacteria
- Engulf pathogens
 - phagosome
- Digest pathogens
 - Phagosome fusses with lysosome
- Release prostaglandins and leukotrienes
 - Stimulate inflammation
 - Restrict spread of pathogens
 - Attract other WBCs
Neutrophil Action (cont.)

- **Degranulation**
 - Granules from cytoplasm fuse with the phagosome
 - granules contain:
 - bactericides
 - hydrogen peroxide and superoxide
 - Defensins:
 - peptides that attack pathogen membranes
 - Form large channels in the pathogen

Eosinophils

- Also called **acidophils**
- 2–4% of circulating WBCs
- Attack large parasites
Eosinophil Actions

• Are phagocytic
 – Not the primary mode of attach
• Excrete toxic compounds:
 – nitric oxide
 – cytotoxic enzymes
• Are attracted to site of injury
 – Control inflammation with enzymes that counteract inflammatory effects of neutrophils and mast cells

Basophils

• Are less than 1% of circulating WBCs
• Are small
• Accumulate in damaged tissue
Basophil Actions

- **Release histamine:**
 - dilates blood vessels
 - Mediator of inflammation
 - Histamine also released by mast cells

- **Release heparin:**
 - prevents blood clotting
 - Also released by mast cells

Monocytes

- 2–8% of circulating WBCs
- Are large and spherical
- Enter peripheral tissues and become macrophages
Macrophage Actions

- Engulf large particles and pathogens
- Secrete substances that attract immune system cells and fibroblasts to injured area

Lymphocytes

- 20–30% of circulating WBCs
- Migrate in and out of blood
- Mostly in connective tissues and lymphatic organs
Lymphocyte Actions

- Are part of the body’s specific defense system

3 Classes of Lymphocytes

1. T cells
2. B cells
3. Natural killer (NK) cells
Slide 75

T cells
- Cell-mediated immunity
- Attack foreign cells directly

Slide 76

B cells
- Humoral immunity
- Differentiate into plasma cells
- Synthesize antibodies
Natural Killer Cells (NK)

- Detect and destroy abnormal tissue cells (cancers)

WBC Disorders

- Leukopenia:
 - abnormally low WBC count
- Leukocytosis:
 - abnormally high WBC count
- Leukemia:
 - extremely high WBC count
3. Platelets

Platelets

- Cell fragments involved in human clotting system
- Nonmammalian vertebrates have thrombocytes (nucleated cells)
Platelet Circulation

- Circulates for 9–12 days
- Are removed by spleen
- 2/3 are reserved for emergencies

Platelet Counts

- 150,000 to 500,000 per microliter
- **Thrombocytopenia:**
 - abnormally low platelet count
- **Thrombocytosis:**
 - abnormally high platelet count
3 Functions of Platelets

1. Release important clotting chemicals
2. Temporarily patch damaged vessel walls
3. Actively contract tissue after clot formation

Platelet Production

• Also called thrombocytopoiesis:
 – occurs in bone marrow
Megakaryocytes

- Giant cells
- Located in bone marrow
- Shed cytoplasm in small membrane-enclosed packets (platelets)
- Will produce about 4000 platelets before engulfed by phagocytes

Hormonal Controls

- Thrombopoietin (TPO)
 - Produced by kidneys
 - Stimulates formation of new megakaryocytes
 - Stimulates platelet formation
- Inteleukin-6 (IL-6)
 - Stimulates platelet formation
- Multi-CSF
 - Stimulates formation of new magakaryocytes
Platelet function

Hemostasis

- The cessation of bleeding
- Consists of three phases
 - vascular phase
 - platelet phase
 - coagulation phase
The Vascular Phase

- A cut triggers *vascular spasm*
- 30-minute contraction

3 Steps of the Vascular Phase

1. Endothelial cells contract:
 - exposes basal lamina (collagen) to bloodstream
3 Steps of the Vascular Phase

2. Endothelial cells release:
 - chemical factors:
 • ADP, tissue factor, and prostacyclin
 - local hormones:
 • endothelins
 - stimulate smooth muscle contraction (spasm)
 - Stimulates cell division of endothelial cells, smooth muscle cells, and fibroblasts

3. Endothelial cell membranes become “sticky”:
 - seal off blood flow
 • Vessel ends may stick together
 • Facilitates attachment of platelets
The Platelet Phase

- Begins within 15 seconds after injury

Figure 19–11b

The Platelet Phase

- **Platelet adhesion** (attachment):
 - to sticky endothelial surfaces
 - to basal lamina
 - to exposed collagen fibers

 - During this process platelets become activated
The Platelet Phase (cont.)

- **Platelet aggregation** (stick together):
 - forms platelet plug
 - closes small breaks

Activated Platelets
Release Clotting Compounds

- Adenosine diphosphate (ADP)
 - Stimulates platelet aggregation and secretion
- Thromboxane A₂ and serotonin
 - Stimulate vascular spasm
- Tissue factor (III)
- PF-3
- Platelet-derived growth factor (PDGF)
 - Stimulates vessel repair
- Calcium ions
 - Required for platelet aggregation and blood clotting
The Platelet Phase

Platelet Plug: Size Restriction

- **Prostacyclin:**
 - released by endothelial cells
 - inhibits platelet aggregation
- **Circulating enzymes:**
 - break down ADP
- **Development of blood clot:**
 - isolates area
- **Inhibitory compounds:**
 - released by other white blood cells
The Coagulation Phase

• Begins 30 seconds or more after the injury

The Coagulation Phase

• Blood clotting (coagulation):
 – Involves a series of steps
 – converts circulating fibrinogen into insoluble fibrin
Blood Clot

- Fibrin network
 - Covers platelet plug
 - Traps blood cells
 - Seals off area

Clotting Factors

- Also called procoagulants
 - Calcium and 11 different Proteins
- Required for normal clotting
Slide 103

Plasma Clotting Factors

<table>
<thead>
<tr>
<th>Table 19–4</th>
<th>Clotting Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>Description</td>
</tr>
<tr>
<td>I</td>
<td>Fibrinogen</td>
</tr>
<tr>
<td>II</td>
<td>Thrombin</td>
</tr>
<tr>
<td>III</td>
<td>Proteins</td>
</tr>
<tr>
<td>IV</td>
<td>calcium</td>
</tr>
<tr>
<td>V</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>VI</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>VII</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>VIII</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>IX</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>X</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>XI</td>
<td>Prothrombin</td>
</tr>
<tr>
<td>XII</td>
<td>Prothrombin</td>
</tr>
</tbody>
</table>

*Note: The concentration values are in milligrams per milliliter (mg/mL) and are typical for healthy individuals.

Slide 104

Cascade Reactions

- During coagulation phase
- Chain reactions of enzymes and proenzymes
- Form 3 pathways
3 Coagulation Pathways

• **Extrinsic pathway:**
 – begins in the vessel wall
 – outside blood stream
• **Intrinsic pathway:**
 – begins with circulating proenzymes
 – within bloodstream

3 Coagulation Pathways

• **Common pathway:**
 – where intrinsic and extrinsic pathways converge
The **Extrinsic Pathway**

- Damaged endothelial cells and paravascular tissue release tissue factor (TF) (III)
- TF combines with calcium and proconvertin (VII)
- This complex Activates Stuart factor (X)
 - Activated factor X (called prothrombinase) is first step in common pathway

The **Intrinsic Pathway**

- Starts by the activation of Hageman factor (XII) in the blood by exposure to collagen at the injury
 - Also activated by glass and plastic
 - Activation of Hageman factor is assisted by PF-3 released from aggregating platelets
- Activated Hageman factor (XII) combines with plasma thromboplastin (IX) to form a complex
- complex activates Stuart Factor (X)
 - This is called prothrombinase
The Common Pathway

- Activate Stuart Factor X (prothrombinase)
- Converts prothrombin to thrombin
- Thrombin converts fibrinogen to fibrin

Functions of Thrombin

- Stimulates formation of tissue factor
 - stimulates release of PF-3:
 - forms positive feedback loop (intrinsic and extrinsic):
 - accelerates clotting
Bleeding Time

- Normally, a small puncture wound stops bleeding in 1–4 minutes

Clotting: Area Restriction

1. Anticoagulants (plasma proteins):
 - antithrombin
 - alpha-2-macroglobulin
 • Inhibits thrombin
2. Heparin
 - from mast cells and basophils
 - activates antithrombin-III
3. Thrombomodulin
 - activates Protein C
 - stimulates the formation of plasmin
 - breaks down fibrin strands
4. Prostacyclin
 - inhibits platelet aggregation
Other Factors

- Calcium ions (Ca^{2+}) and vitamin K are both essential to the clotting process

Clot Retraction

- After clot has formed:
 - Platelets contract and pull torn area together
 - Accomplished by actomyosin
 - Takes 30–60 minutes
Fibrinolysis

- Slow process of dissolving clot:
 - Requires
 - thrombin from common pathway
 - tissue plasminogen activator
 - released from damaged tissue
 - They Convert Plasminogen to plasmin:
 - digests fibrin strands